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Abstract 

Neural dialog system has been an active area of research. Most neural dialog systems follow 

the sequence-to-sequence framework, that is, to generate an answer for a given question.  

However, traditional models have a 1-to-1 assumption between questions and answers and 

neglect the distributions of the target sequences, thus producing monotonous answers. In our 

research project, we apply a variational sequence to sequence model to generate diverse 

answers. First, we introduce the mathematical background. Second, we implement DIAL-LV 

[3], a model proposed recently to generate diverse answers. Finally, we evaluate the 

performance of the implemented model. 

 

Introduction 

Generative models were popular in image processing. In particular, the Variational Auto-

Encoder (VAE) [5] shows a potential effect on generative models in text processing field, and 

then the latent variable trick dominates recent publications [2, 3, 6, 7, 8]. VAE solves two 

essential problems: the definition of latent variable and how to integrate over it [4]. the focus 

of following papers moved on to the concept and structure of the model. 

Google Brain introduces a model that describes the latent distribution of the entire sentences 

[2]. It improves the standard RNN language model, which generates words one by one, 

lacking global features. Under the influence of this paper, more concepts and structures of 

models appeared, for example, a new generative neural variational framework [7], a discrete 



model for sentence compression [6], a model describing the answer distribution as well as 

generating diverse answers [3], etc. 

While all the models used variational Bayesian methods, we first introduce the mathematical 

concepts of  the models. Then, we analyze the ideas behind the structures of the models and 

introduce tricks to deal with the confronting problems. Finally, we implement and evaluate 

the latest model. 

 

Mathematical Background 

1. Maximum a posteriori estimation (MAP): 

MAP is the fundamental estimation in Bayesian statistics where we use a prior 

distribution g over θ (θ is the parameter of our model and it’s called Maximum 

Likelihood Estimation (MLE) when g is trivial), and use  

 

to calculate the posterior distribution of θ. Then MAP gives the estimation of θ by  

. 

However, when a latent variable z is introduced, we have 

𝑝(𝑥|𝜃) = ∫ 𝑝(𝑧|𝜃)𝑝(𝑥|𝑧, 𝜃) 𝑑𝑧, 

and if this is not differentiable or cannot be evaluated, we are not able to use MAP 

directly. 

 

2.  Expectation–maximization algorithm (EM algorithm): 



For problems with latent variables introduced, usually it’s not possible to 

marginalize the latent variable and to optimize the objective directly by 

MAP/MLE. EM algorithm, an iterative method to estimate the value according to 

MAP/MLE, is born to solve this problem. Due to space restriction, the specific 

description and proof is omitted.  

 

3. Variational Bayes Inference: 

However, because of the intractability of latent variable, both MAP/MLE and EM 

algorithm cannot be implemented in most cases in our learning process. 

Considering we always deal with large datasets, Monte Carlo implementations are 

not feasible as well. So we need a further improvement for EM algorithm, and that 

is variational Bayes inference (VB) [1].  

There are two main purpose of VB:  

1)  Estimate the posterior distribution of the latent variable so that we can 

apply statistical inference methods on them.  

2)  For a specific model, generate an evidence lower bound (ELBO), which is 

used for model selection.  

VB is widely used in deep learning area and both models we are going to talk 

about used VB to do evaluations.  

 

 

Model Description (LVDM) 



 

Figure 1: the schematic of LVDM (For Training) 

 

For higher diversity in dialogue response, Latent Variable Dialogue Model (see Figure 1) 

introduced a latent variable z with a standard Gaussian prior in decoding process. 

Traditionally, encoder-decoder model will encode all possible replies to X in decoder’s 

probability distribution 𝑃(𝑌|𝑋) and makes it hard to disentangle possible replies. Now with 

the help of stochastic component z, the replies are stored in the probability distribution 

𝑃(𝑌|𝑧, 𝑋) rather than 𝑃(𝑌|𝑋) and no exact maximum likelihood search can be performed for 

reply Y, thus we can avoid boring reply problem. 

When training, the model first feeds prompt X and reply Y into two independent bidirectional 

RNNs with GRU cells, and get hx and hy from their hidden states passed through a single 

nonlinear layer. Then it calculates mean and variance of proposal distribution 𝑄(𝑧|𝑋, 𝑌) as: 

 

where 𝑄(𝑧|𝑋, 𝑌) is an approximation of the posterior 𝑃(𝑧|𝑋, 𝑌), [a b] denotes the 

concatenation of a and b, and diag denotes inserting along the diagonal of a matrix. 



With distribution 𝑄(𝑧|𝑋, 𝑌), we can sample z using a reparametrization trick, initialize the 

hidden state of decoder GRU with [hx z] and train it by minimizing the following ELBO for 

the log-likelihood of the data: 

 

There is a slight different in training and predicting of this model. At generation time the 

latent variable z is sampled from prior distribution 𝑁(0, 𝐼𝑛) and replies is decoded from 

𝑃(𝑌|𝑧, 𝑋). 

 

 

Tricks: 

1. Annealing KL Term: 

As RNNs are powerful density estimators, the model tends to force the KL term to 0 

and optimize the data reconstruction term of the ELBO, which leads to the failure in 

encoding useful information into z. The paper pointed out that the problem can be 

solved by gradually annealing the KL term weight over the course of model. In 

practice, we used a piecewise function f(x) to calculate the KL term weight as: 

 

where x denotes current time step, m denotes the maximum weight of KL term, and t 

denotes target training times.  

However, we found another problem in KL term during training. In practice, after a 

few loops of training, the KL term will be too small for system to represent and 

finally become NAN, which stops the system from training. We solved it by setting 



up a lower bound for KL term so that further trial to minimize the extreme small KL 

term is prohibited. In our implementation, the lower bound is set to 0.0002. 

 

2. Reparametrization Trick: 

In order to generate sample from distribution 𝑄(𝑧|𝑋, 𝑌), this trick as to express the 

random variable z as a deterministic variable is introduced [5], thus a differential 

estimator can be constructed. In this case, as z follows a Gaussian distribution, we can 

sample 𝑧~𝑁(𝜇, Σ) by first choosing an ϵ from standard distribution 𝑁(0, 𝐼𝑛) and then 

let 𝑧 = 𝜇𝜖 + Σ. By implementing this trick, a differentiable estimator of variational 

lower bound can be obtained and the whole training process can run smoothly. 

 

 

Implementation (LVDM) 

1. Preprocess: 

First, we convert all QA pairs into integers and save them into tfrecords for better 

training performance. Then, we split questions and answers, strip all punctuations, 

add <GO> and <EOS> symbols to all sentences, and used collections module in 

python to convert words to integers efficiently. One severe problem we face is that 

our primary implementation is overusing all the memory because the program simply 

loaded all data into memory without any optimization. We fix this problem by loading 

dataset line by line and utilizing the update function of python Counter to filter out 

words with low occurrence rate every mini-batch, by which memory use and 

processing time are reduced significantly. The read_and_decode function in reader.py 

is also implemented for loading data from tfrecords in training and prediction process. 

 



2. Main: 

In main.py we constructed the model graph in tensorflow and implemented training 

and prediction function. We first found the paper ambiguous, because the model 

described in this paper can be only applied to the case that both prompt and reply are 

given, which means that it cannot be used for prediction. We then asked the author 

through email and got quick response from him. According to his reply, we made 

𝑧~𝑁(0, 𝐼𝑛) when predicting and the whole model became clear. 

Next problem is the concrete representation of the second term in ELBO. Since both 

paper [3, 5] lack detailed explanation, we had to figure it out by ourselves. We made 

an analogy to seq2seq model and used the tf.nn.softmax_cross_entropy_with_logits to 

represent it, which is proven to be reasonable from the training result. 

The last technical problem is that tensorflow does not support the feed_previous 

function in their RNN implementation, therefore we implemented a RNN with 

feed_previous function using raw_rnn in tensorflow, and it worked well during 

testing. Note that for training we used dynamic RNN to simplify training process, and 

that’s why the training and prediction processes used slightly different RNN with 

same internal parameters. 

 

3. Evaluation: 

a. We first calculate the frequency of each word and select the top 20 words. 

Then, we plot the graph with logrithm of the frequency rank of the words as x-

axis and logrithm of frequency of the words as y-axis. We use linear 

regression to find parameter k, b in the linear equation y = kx + b, and use -k 

as the estimation of the Zipf parameter. 



b. We implement uniqueness check  in two ways. First we find the uniqueness 

rate ( answersunique/answerstotal ) for each question, and calculate the mean 

of rates of all answers as the result. This uniqueness is used to check the 

effectiveness of the latent variable. Second we calculate the rate of unique 

ones among all answers ( answersunique/answerstotal ). This uniqueness is 

used to check the simple answer problem --- for instance, “I don’t know” is a 

reasonable answer for every question but we don’t really like it to appear 

many times. 

c. We also record the KL term loss, expectation loss and total loss after training 

and use them for evaluation as well as comparison with other models.   

 

 

Conclusion 

In this project, we implement a variational sequence-to-sequence model for the dialogue 

system. We first present some mathematical toolsfor the models. Then, we implement the 

LVDM model, which  estimates the distribution of answers and generates diverse answers. 

Finally, we evaluate the performance of the implemented model. 
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